

Duration of Neurocognitive Impairment With Medical Cannabis Use: A Scoping Review

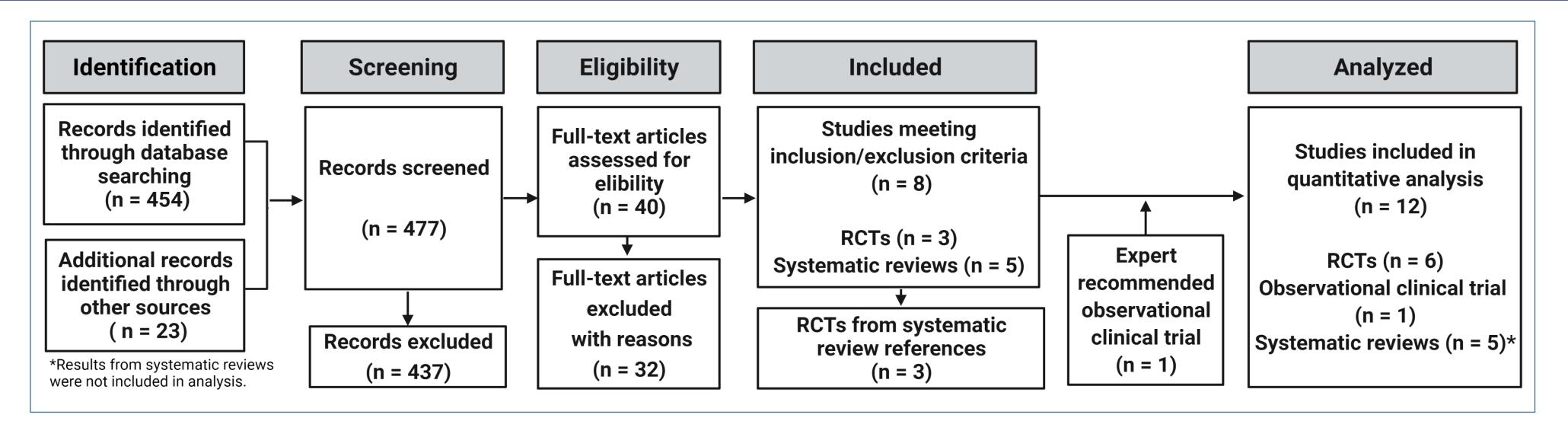
Lindsay Lo MSc 1 , April Christiansen MSc(C) 2 , Lauren Eadie MD 3 , Caroline MacCallum MD 3,4

¹Dalla Lana School of Public Health, University of Toronto, Toronto, ON, ²Department of Neuroscience, Queen's University, Kingston, ON, ³Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC

Background

- ❖ The recreational use of cannabis has well-established dosedependent effects on neurocognitive and psychomotor functioning, but there is little consensus on the degree and duration of impairment typically seen with medical cannabis use. ^{1,2}
- ❖ Distinct differences between medical and recreational use may not allow the same conclusions to be drawn about the presence or extent of impairment in medical cannabis patients
- ❖ THC impairment disrupts important cognitive and psychomotor functions needed for safety-sensitive work, including driving motorized vehicles, thus, the need to elucidate safety regulations surrounding THC use for medical cannabis patients is critical.

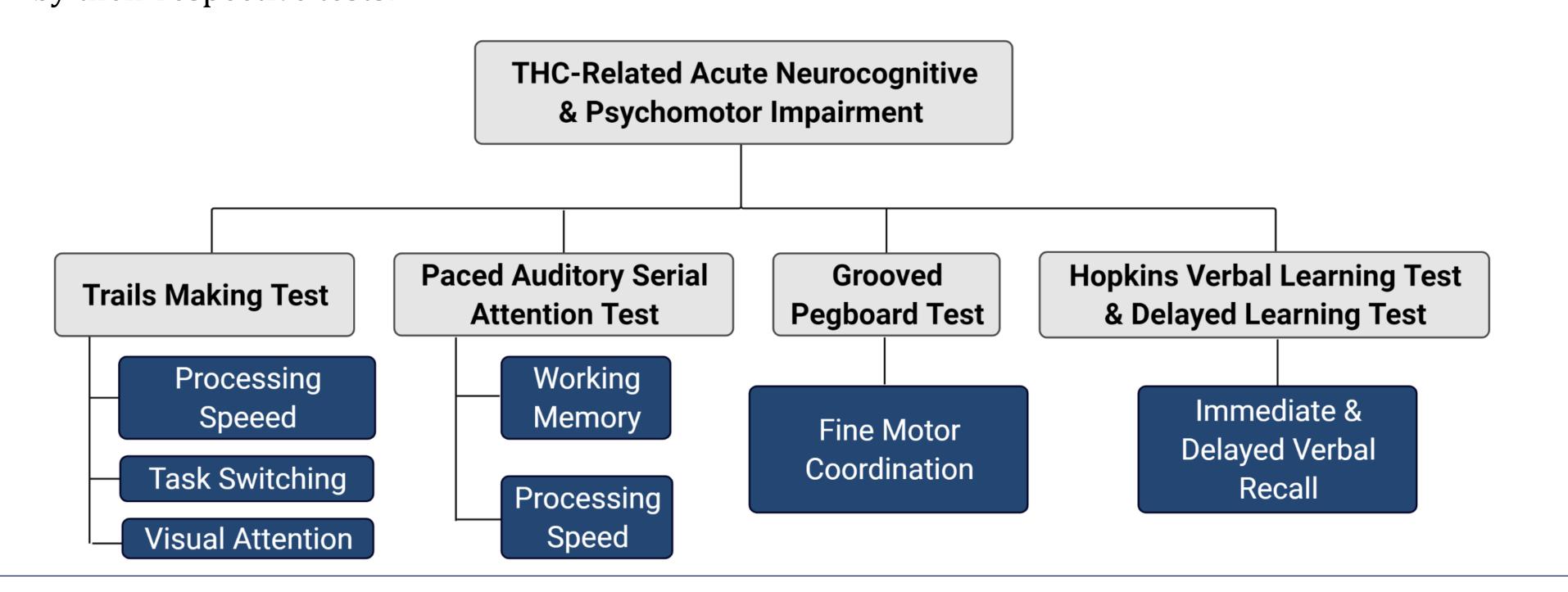
Study aims

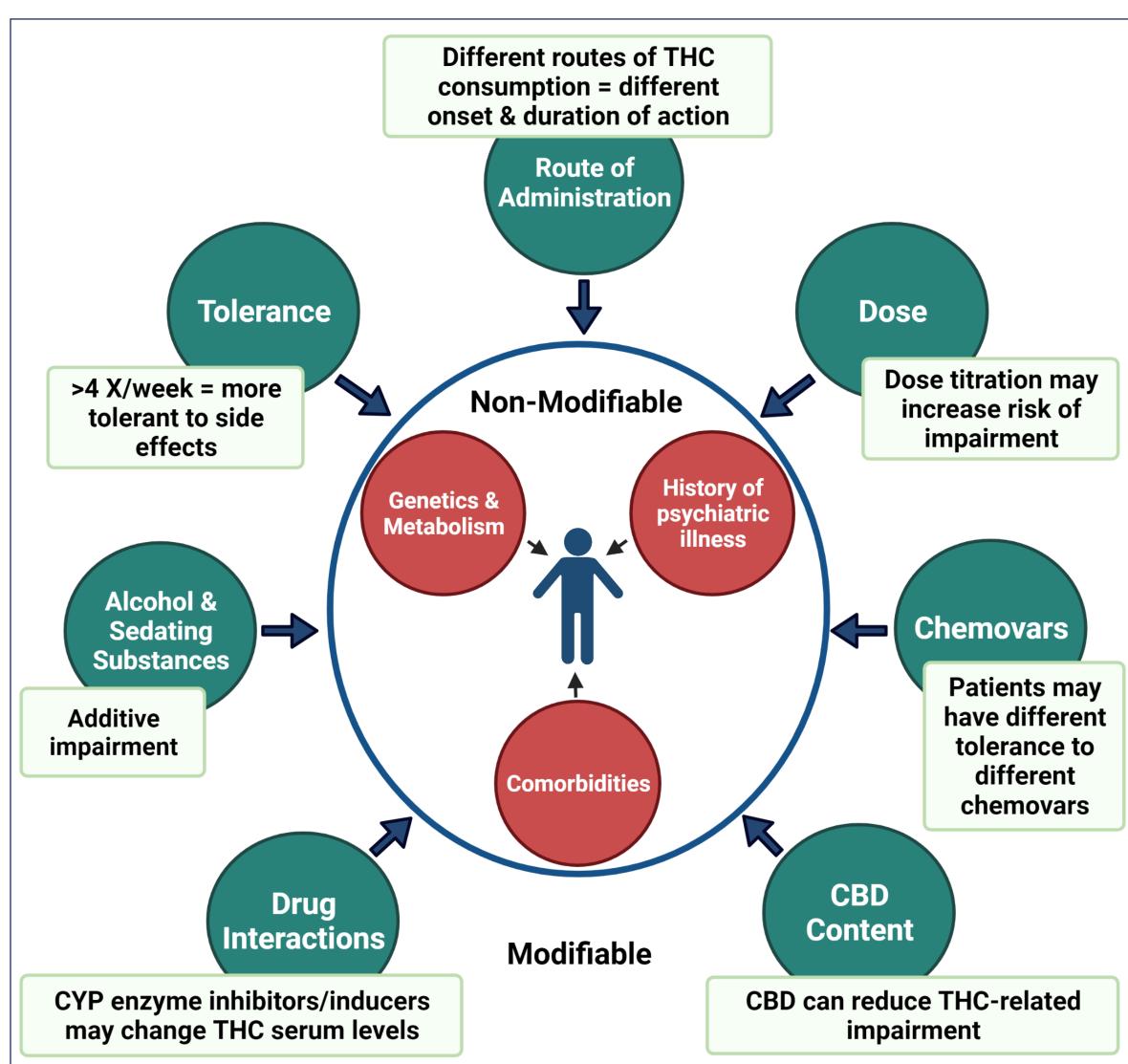

To identify and summarize studies that investigate the duration and degree of acute neurocognitive impairment with medical cannabis use.

Determine	Discover	Compare
What is a reasonable	What standardized	These results to
timeline for medical	objectives were the	recreational cannabis
patients to anticipate	best at determining	impairment in
possible THC-induced	THC-induced	literature.
impairment.	impairment.	

Methods

- **❖ Databases:** Ovid MEDLINE, EMBASE
- ❖ Search terms: Cannabinoids, dronabinol, marijuana, THC, Sativex, chronic pain, impairment, intoxication, reaction time, coordination, neurocognitive, psychomotor, and their synonyms/variations (available in publication).
- **❖Inclusion & Exclusion criteria**: See PICOS statement


P (Problem, Patient, Population)	Adults living with chronic, non-cancer pain (pain of >3month duration) and/or spasticity.
I (Intervention/ Indicator)	Medical cannabis use or cannabinoid-based medicines.
C (Comparison)	Chronic pain/spasticity controls (without cannabis use). Studies without comparator were included.
O (Outcome of interest)	Duration of acute neurocognitive and psychomotor impairment using objective standardized measures.
S (Study types selected)	Randomized controlled trials and other trials were included.


Results

Study	Population	Results
Wallace et al., (2015) ⁴ Randomized, double-blind, placebo-	Painful Diabetic Neuropathy	Dose-dependent decline in neurocognitive performance with THC exposure. No difference between THC & placebo groups
controlled crossover	(n = 16)	at 240 min (4hr).
Wilsey et al. (2008) ⁵ Double-blind, placebo - controlled crossover study	Central and Peripheral Neuropathic Pain	Modest decline in cognitive performance with THC use, most significant in the THC group. 76% of participants had cognitive impairment at baseline.
	(n = 38)	
Corey-Bloom et al. (2012) ⁶ Randomized placebo-controlled trial	Multiple Sclerosis Spasticity	Timed walk: no difference
	(n = 37)	Paced Auditory Serial Attention Test: 4% THC group had worse performance compared to placebo at 45-min.
Notcutt et al. (2004) ⁷ Prospective,	Chronic mostly neuropathic pain	Testing improved after initiation of cannabis-based medicines.
randomized, double-blind, placebo, crossover study	(n = 34)	
Wilsey et al. (2016) ⁸	Patients with refractory	THC showed dose-dependent neurocognitive impairment
Crossover, randomized, placebo- controlled human laboratory experiment	neuropathic pain who have	and resolution 2 hours after inhalation of THC.
	(n = 48)	
Wilsey et al. (2013) ⁹	Central or peripheral	THC produced short term neurocognitive impairment. No
Randomized double-blind placebo controlled cross-over trial	neuropathic pain (Refractory)	difference in performance between THC and placebo at 2 h after the last dosing session.
	(n = 39)	
Olla et al. (2019) ¹⁰ Observational Clinical Trial	Medical Cannabis Patients	No psychometric evidence for a decline in performance on cognitive testing following THC ingestion compared to
	(n = 22)	normative sample.

- Neurocognitive assessments post-THC exposure showed no difference between placebo or any THC groups within 4 hours
- THC impairment was dose-dependent
- ❖ Acute impairment was found in the following neurocognitive and psychomotor domains as determined by their respective tests:

Discussion

Modifiable and non-modifiable factors influence the degree & duration of impairment

Clinical Implications

- ❖ Tolerance can be built to the impairing effects of THC using a consistent, low THC dose³
- Slow titration method should be used at initiation
- Utilize CBD dominant or 1:1 THC:CBD chemovars when possible
- ❖ Counsel patients on driving or engaging in safety sensitive activities no less than 4 hr (inhaled) or 6 hr (ingested) after cannabis consumption
- ❖ Adjust concomitant medications if patient is achieving adequate symptom control with cannabis to decrease risk of drug interactions or compounded sedation

Limitations

- Large heterogeneity in study populations, designs, protocols, objectives measures of impairment
- Only 3/6 studies had baseline cognitive functioning tests for comparison
- Very limited literature on oral THC products
- ❖ Relatively small sample sizes → issues in statistical power and strength of conclusions made

References

2. Eadie, L., Lo, L. A., Christiansen, A., Brubacher, J. R., Barr, A. M., Panenka, W. J., & MacCallum, C. A. (2021). Duration of neurocognitive impairment with medical cannabis use: a scoping review. Frontiers in psychiatry, 12, 286.
3. Grotenhermen, F. (2007). The toxicology of cannabis and cannabis prohibition. Chemistry & biodiversity, 4(8), 1744-1769
4. Wallace, M. S., Marcotte, T. D., Umlauf, A., Gouaux, B., & Atkinson, J. H. (2015). Efficacy of inhaled cannabis on painful diabetic neuropathy. The Journal of Pain, 16(7), 616-627.
5. Wilsey, B., Marcotte, T., Tsodikov, A., Millman, J., Bentley, H., Gouaux, B., & Fishman, S. (2008). A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. The Journal of Pain, 9(6), 506-521.
6. Corey-Bloom, J., Wolfson, T., Gamst, A., Jin, S., Marcotte, T. D., Bentley, H., & Gouaux, B. (2012). Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial. Cmaj, 184(10), 1143-1150.
7. Notcutt, W., Price, M., Miller, R., Newport, S., Phillips, C., Simmons, S., & Sansom, C. (2004). Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 'N of 1'studies. Anaesthesia, 59(5), 440-452.